40 resultados para Surface adsorption

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate that an amphiphilic block copolymer such as polyethylene glycol-b-polyethylene can be used as both dispersing and interfacial compatibilizing agent for the melt compounding of LLDPE with cellulose nano-fibers. A simple and effective spray drying methodology was first used for the first time for the preparation of a powdered cellulose nano-fibers extrusion feedstock. Surface adsorption of the amphiphilic PEG-b-PE was carried out directly in solution during this process. These various dry cellulosic feedstock were subsequently combined with LLDPE via extrusion to produce a range of nano-composites. The collective outcomes of this research are several folds. Firstly we show that presence of surface adsorbed PEG-b-PE effectively hindered the aggregation of the cellulose nano-fibers during the extrusion, affording clear homogenous materials with minimum aggregation even at the highest loading of cellulose nano-fibers (∼23 vol.%). Secondly, the tailored LLDPE/cellulose interface arising from intra- and inter-molecular hydrogen and Van der Waals bonds yielded significant levels of mechanical improvements in terms of storage and tensile modulus. We believe this study provides a simple technological template to produce high quality and performant polyolefins cellulose-based nano-composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface interaction is extremely important to both fundamental research and practical application. Physisorption can induce shape and structural distortion (i.e., conformational changes) in macromolecular and biomolecular adsorbates, but such phenomena have rarely been observed on adsorbents. Here, it is demonstrated theoretically and experimentally that atomically thin boron nitride (BN) nanosheets as an adsorbent experience conformational changes upon surface adsorption of molecules, increasing adsorption energy and efficiency. The study not only provides new perspectives on the strong adsorption capability of BN nanosheets and many other two-dimensional (2D) nanomaterials but also opens up possibilities for many novel applications. For example, it is demonstrated that BN nanosheets with the same surface area as bulk hexagonal BN particles are more effective in purification and sensing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have many properties desirable for surface-enhanced Raman spectroscopy (SERS). BN nanosheets have a strong surface adsorption capability toward airborne hydrocarbon and aromatic molecules. For maximized adsorption area and hence SERS sensitivity, atomically thin BN nanosheet-covered gold nanoparticles have been prepared for the first time. When placed on top of metal nanoparticles, atomically thin BN nanosheets closely follow their contours so that the plasmonic hot spots are retained. Electrically insulating BN nanosheets also act as a barrier layer to eliminate metal-induced disturbances in SERS. Moreover, the SERS substrates veiled by BN nanosheets show an outstanding reusability in the long term. As a result, the sensitivity, reproducibility, and reusability of SERS substrates can be greatly improved. We also demonstrate that large BN nanosheets produced by chemical vapor deposition can be used to scale up the proposed SERS substrate for practical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surface enhanced Raman spectroscopy (SERS) is a useful multidisciplinary analytic technique. However, it is still a challenge to produce SERS substrates that are highly sensitive, reproducible, stable, reusable, and scalable. Herein, we demonstrate that atomically thin boron nitride (BN) nanosheets have many unique and desirable properties to help solve this challenge. The synergic effect of the atomic thickness, high flexibility, stronger surface adsorption capability, electrical insulation, impermeability, high thermal and chemical stability of BN nanosheets can increase the Raman sensitivity by up to two orders, and in the meantime attain long-term stability and extraordinary reusability not achievable by other materials. These advances will greatly facilitate the wider use of SERS in many fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present article describes a new titanium oxide‐based (TiO2) photocatalyst that shows promise for acceleration of dye degradation. A hierarchical TiO2 nanostructure comprising nanorods on‐nanofibres has been prepared using a sol–gel route and electrospinning. Calcination of electrospun nanobre mats was performed in air at 500 °C. The TiO2 nanofibre surface was then exploited as a ‘seeding ground’ to grow TiO2 nanorods by a solvothermal process in NaOH. The nanofibres had a diameter of approximately 100 nm while the nanorods were evenly distributed on the nanofibre surface with a mean diameter of around 50–80 nm. The hierarchical nanostructure showed enhanced photocatalytic activity when compared to pure TiO2 nanofibres. This improved efficiency in degrading methylene blue through the photocatalytic process was attributed to the larger specific surface area of the TiO2 nanostructures, as well as high surface‐to‐volume ratio and higher reactive surface resulting in enhanced surface adsorption and interfacial redox reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to overcome interfacial incompatibility issues in natural fibre reinforced polymer bio-composites, surface modifications of the natural fibres using complex and environmentally unfriendly chemical methods is necessary. In this paper, we demonstrate that the interfacial properties of cellulose-based bio-composites can be tailored through surface adsorption of polyethylene glycol (PEG) based amphiphilic block copolymers using a greener alternative methodology. Mixtures of water or water/acetone were used to form amphiphilic emulsions or micro-crystal suspensions of PEG based amphiphilic block copolymers, and their deposition from solution onto the cellulosic substrate was carried out by simple dip-coating. The findings of this study evidence that, by tuning the amphiphilicity and the type of building blocks attached to the PEG unit, the flexural and dynamic thermo-mechanical properties of cellulose-based bio-composites comprised of either polylactide (PLA) or high density polyethylene (HDPE) as a matrix, can be remarkably enhanced. The trends, largely driven by interfacial effects, can be ascribed to the combined action of the hydrophilic and hydrophobic components of these amphiphiles. The nature of the interactions formed across the fibre-matrix interface is discussed. The collective outcome from this study provides a technological template to significantly improve the performance of cellulose-based bio-composite materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An in situ polymerization strategy was used to functionalize graphene oxide (GO) with poly(N,N-dimethyl amino ethylmethacrylate) (PDMAEMA) for the selective removal of anionic dyes. Various characterization methods demonstrate that PDMAEMA-grafted GO (GO-PDMAEMA) was successfully synthesized, and the high PDMAEMA content of 68.5% in GO-PDMAEMA changed the zeta potential significantly from -36.5 (GO) to 41.5 (GO-PDMAEMA). This change in the charge of GO-PDMAEMA greatly increased the adsorption capacities for anionic dye orange G (OG) compared to the pristine GO. The maximum adsorption capacity for anionic OG dye based on the Langmuir model is 609.8 mg g-1. The adsorption mechanism is believed to be a consecutive process of intra-particle diffusion and surface adsorption, with electrostatic interactions as the key driving force. The GO-PDMAEMA nanocomposite also showed excellent regeneration capacity and selectivity towards the separation of various anionic dyes (i.e. OG, Eosin yellow and Congo red) from an aqueous dye mixture. In conclusion, our method offers a promising strategy for developing new anionic dye adsorbents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atomistic simulations of molecular adsorption onto inorganic substrates under aqueous conditions can be used to guide the rational design of new materials, fabricated using biomimetic methods. The success of such work depends critically on the model used. Here, we investigate the impact of using a rigid structural model of the (0 1 1) ?-quartz surface, over a fully flexible model, on the calculated free energy change in the adsorption of a single molecule of benzene (a simple analogue of the amino acid phenylalanine) from liquid water. Subtle differences in the mobility of the adsorbate close to the surface result in the free energy of adsorption being overestimated by the rigid model, relative to the fully flexible case. Moreover, we find that the distribution of bound configurations of the adsorbate at their respective free energy minima is different between the two models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In anaerobic degradation of substrates containing mainly particulate organic matter, solids hydrolysis is rate-limiting. In these investigations, the particle size of various substrates was reduced by comminution to support hydrolysis. Two positive effects of comminution were observed. For substrates with high fibre content, which are particularly resistant to biodegradation, a significant improvement of the degradation degree was observed as a result of comminution. Secondly, for all substrates tested, and particularly for those rich in fibres, the degradation rate of comminuted samples was significantly higher. The first reason for both effects is an increase of the sample surface area. Several methods for measuring the specific surface area of organic materials, including particle size analysis, Nitrogen-adsorption and enzyme adsorption, were used and compared for the purpose of this study, where the surface area accessible to microbial enzymes is critical. The significance of the surface area in anaerobic degradation of particulate substrates was investigated through a kinetic model where the hydrolysis rate was based on the sample surface area. Good agreements were obtained between model and experiments carried out with samples of various specific surface areas. These results reinforced the significance of the sample surface area in anaerobic degradation processes. However, other effects of comminution responsible for the increased degradation degree and degradation rate were identified and discussed. These include: the increase of dissolved compounds due to cell rupture, exposition of surface areas previously inaccessible for microbial degradation, and alteration of the sample structure such as the lignin-cellulose arrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basic activated alumina with negatively charged surface is considered as a potential adsorbent for a targeted molecule with positive polarity. Adsorption of sodium by basic activated alumina was investigated as a method for desalting dairy waste streams, in which sodium ion concentration averaged 600 mg/L. Sodium equilibrium and kinetic adsorption were investigated using basic activated alumina with synthetic brines. The results of equilibrium adsorption show that uptake of sodium by activated alumina is significantly higher when the pH is greater than 8 and increases as the pH of the brines increases until pH reaches around 10. The results of kinetic adsorption show that 90 hours were needed to reach equilibrium for sodium adsorption. Binding and diffusion processes are suggested to have taken place within the activated alumina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three types of titania supported materials including titanium dioxide and silicon dioxide composite, titania-coated activated carbon and titania-coated glass beads were prepared and used as photocatalysts to remove toluene from an air stream. Their surface areas were analysed. TEM image reveals titania-silica composites were nanostructured aggregates. XRD was used to determine their crystalline phase which was 100% anatase for the titania component. A fixed bed reactor was designed and built in the laboratory, the toluene with initial concentration of 300 ppm (1149 mg/m3) was fed into the reactor, the destruction efficiencies of toluene were determined by the gas analyser. It was also found that TiO2-SiO2 aggregates with high surface area (421.1 m2/g) achieved high destruction efficiencies. The combined effects of adsorption and photocatalysis were further studied by comparing the performance of pure activated carbon (surface area of 932.4 m2/g) and TiO2 coated activated carbon with BET surface area of 848.4 m2/g. It was found that the TiO2 coated activated carbon demonstrated comparable results to pure activated carbon, and most importantly, the TiO2-coated activated carbon can be effectively regenerated by UV irradiation, and was reused as adsorbent. The experimental result of titania-coated glass beads demonstrated a steady degradation efficiency of 15% after a period of 17 hours. It helped to understand that photocatalysis degradation ability of the TiO2 was constant regardless of the adsorption capacity of the catalysts. This photocatalytic property can be used to degrade the adsorbed toluene and regenerate the catalyst. This study revealed that if the experiments were designed to use adsorption to remove toluene and followed by regeneration of adsorbent using photocatalysis, it could achieve a very high removal efficiency of toluene and reduce the regeneration cost of saturated adsorbent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) exist widely in both the indoor and outdoor environment. The main contributing sources of VOCs are motor vehicle exhaust and solvent utilization. Some VOCs are toxic and carcinogenic to human health, such as benzene. In this study, TiO2–SiO2 based photocatalysts were synthesized using the sol–gel method, with high surface areas of 274.1–421.1 m2/g obtained. Two types of pellets were used as catalysts in a fixed-bed reactor installed with a UV black light lamp. Experiments were conducted to compare their efficiencies in degrading the VOCs. Toluene was used as the VOC indicator. When the toluene laden gas stream passed through the photocatalytic reactor, the removal efficiencies were determined using a FTIR multi-gas analyser, which was connected to the outlet of the reactor to analyse the toluene concentrations. As the TiO2–SiO2 pellets used have a high adsorption capacity, they had dual functions as a photocatalyst and adsorbent in the hybrid photocatalysis and adsorption system. The experiments demonstrated that the porous photocatalyst with very high adsorptive capacity enhanced the subsequent photocatalysis reactions and lead to a positive synergistic effect. The catalyst can be self-regenerated by photocatalytic oxidation of the adsorbed VOCs. When the UV irradiation and feeding gas is continuous, a destruction efficiency of about 25% was achieved over a period of 20 h. Once the system was designed and operated into adsorption/regeneration mode, a higher removal efficiency of about 55% was maintained. It was found that the catalyst pellets with a higher surface area (421 m2/g) achieved higher conversion efficiency (100%) for a longer period than those with a lower surface area. A full spectrum scan was carried out using a Bio-rad Infrared spectrometer, finding that the main components of the treated gas stream leaving the reactor, along with untreated toluene, were CO2 and water. The suspected intermediates of aliphatic hydrocarbons and CO were found in minimal amounts or were non detectable. The kinetic rate constants were calculated from the experimental results, it appeared that the stronger adsorption capacity, i.e. larger specific surface area, the higher conversion efficiency would be achieved.